Phagolysosomal resistance hypothesized to be a danger signal

Author:

Forden Christopher A.1ORCID

Affiliation:

1. Mountain View California USA

Abstract

AbstractAntigen presenting cells sometimes require T cell “help” to kill and decompose microbes they capture, especially when those microbes resist effector molecules including nitric oxide and reactive oxygen species. Pathogens are more likely to resist those effectors, shared by the innate and adaptive immune systems, than are commensals. Does such resistance alert the immune system to the danger posed by those pathogens? Several lines of evidence suggest this occurs. Mouse studies showed a surprising exacerbation, not alleviation of experimental autoimmune encephalomyelitis, by suppression of nitric oxide production, but only when the suppression was applied to animals undergoing vaccination with myelin. In contrast, animals receiving T cells activated by vaccination without suppression of nitric oxide benefitted from reduced autoimmune cytotoxicity when nitric oxide production was suppressed after adoptive transfer. Vaccinia and adenovirus suppress nitric oxide production and have been successful vaccine platforms, also consistent with the above phagolysosomal resistance hypothesis. The hypothesis solves a long‐standing quandary—how can nitric oxide protect against both infection and autoimmunity, especially autoimmune diseases for which it seems a major effector? The importance of physical linkage between epitopes, first proposed in Bretscher's Two‐Step, Two‐Signal theory dependent on B cells, is extended to include phagolysosomal resistance in general, plus a corollary proposition that the immune system detects resistance to dissociation of high‐affinity pathogenic ligands from host binding sites to make neutralizing antibodies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3