Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism.

Author:

Urioste S1,Hall L R1,Telford S R1,Titus R G1

Affiliation:

1. Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115.

Abstract

Tick-borne pathogens would appear to be vulnerable to vertebrate host immune responses during the protracted duration of feeding required by their vectors. However, tick salivary components deposited during feeding may inhibit hemostasis and induce immunosuppression. The mode of action and the nature of immunosuppressive salivary components remains poorly described. We determined that saliva from the main vector of the agent of Lyme disease, Ixodes dammini, profoundly inhibited splenic T cell proliferation in response to stimulation with concanavalin A or phytohemagglutin, in a dose-dependent manner. In addition, interleukin 2 secretion by the T cells was markedly diminished by saliva. Tick saliva also profoundly suppressed nitric oxide production by macrophages stimulated with lipopolysaccharide. Finally, we analyzed the molecular basis for the immunosuppressive effects of saliva and discovered that the molecule in saliva responsible for our observations was not PGE2, as hypothesized by others, but rather, was a protein of 5,000 mol wt or higher.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3