Identification of microRNAs in the Lyme Disease Vector Ixodes scapularis

Author:

Kumar Deepak,Downs Latoyia P.ORCID,Embers MonicaORCID,Flynt Alex Sutton,Karim ShahidORCID

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in many biological processes, including the immune pathways that control bacterial, parasitic, and viral infections. Pathogens probably modify host miRNAs to facilitate successful infection, so they might be useful targets for vaccination strategies. There are few data on differentially expressed miRNAs in the black-legged tick Ixodes scapularis after infection with Borrelia burgdorferi, the causative agent of Lyme disease in the United States. Small RNA sequencing and qRT-PCR analysis were used to identify and validate differentially expressed I. scapularis salivary miRNAs. Small RNA-seq yielded 133,465,828 (≥18 nucleotides) and 163,852,135 (≥18 nucleotides) small RNA reads from Borrelia-infected and uninfected salivary glands for downstream analysis using the miRDeep2 algorithm. As such, 254 miRNAs were identified across all datasets, 25 of which were high confidence and 51 low confidence known miRNAs. Further, 23 miRNAs were differentially expressed in uninfected and infected salivary glands: 11 were upregulated and 12 were downregulated upon pathogen infection. Gene ontology and network analysis of target genes of differentially expressed miRNAs predicted roles in metabolic, cellular, development, cellular component biogenesis, and biological regulation processes. Several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including sphingolipid metabolism; valine, leucine and isoleucine degradation; lipid transport and metabolism; exosome biogenesis and secretion; and phosphate-containing compound metabolic processes, were predicted as targets of differentially expressed miRNAs. A qRT-PCR assay was utilized to validate the differential expression of miRNAs. This study provides new insights into the miRNAs expressed in I. scapularis salivary glands and paves the way for their functional manipulation to prevent or treat B. burgdorferi infection.

Funder

National Institutes of Health

USDA NIFA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3