Sensitization mechanism of metal oxide nanocluster resists with carboxylic acid ligands

Author:

Otsuka TomoeORCID,Muroya Yusa,Ikeda Takuya,Komuro Yoshitaka,Kawana Daisuke,Kozawa TakahiroORCID

Abstract

Abstract Metal oxide nanocluster resists are a promising candidate for enabling the high-volume production of semiconductor devices with high-numerical-aperture extreme ultraviolet exposure tools. In this study, the sensitization mechanism of metal oxide nanocluster resists was investigated by focusing on the radiation-induced reactions of carboxylic acid ligands. Radiolytic products in various solutions of unsaturated carboxylic acids, aromatic carboxylic acids, and saturated carboxylic acids were analyzed by electrospray ionization mass spectrometry, high-performance liquid chromatography, and dynamic light scattering. The conditions of the solutions were selected to control reaction paths of intermediates. The major reaction paths induced by ionizing radiation were clarified. The obtained results suggest that the generation of bridging ligands is essential to the sensitization of metal oxide nanocluster resists. Both low-energy electrons and radical cations can trigger dimerization. The diffusion of small radicals should be suppressed to prevent dimerization at undesired places.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3