Suppression of newly generated threading dislocations at the regrowth interface of a GaN crystal by growth rate control in the Na-flux method

Author:

Yamauchi Hyoga,Tandryo RicksenORCID,Yamada Takumi,Murakami Kosuke,Usami Shigeyoshi,Imanishi MasayukiORCID,Maruyama MihokoORCID,Yoshimura Masashi,Mori Yusuke

Abstract

Abstract In a previous study, we successfully obtained a large-diameter, low-dislocation-density GaN wafer using the flux-film-coated and the multi-point-seed technique (FFC-MPST). As a production cost-cutting strategy, we are aiming to reuse a part of grown GaN crystals and produce thicker films by the Na-flux regrowth. Recently, however, it was found that threading dislocations (TDs) were generated at the growth interface in homoepitaxial growth of GaN crystals by the Na-flux method. In this study, we found that rapid growth in the regrowth contributes to the formation of inclusions causing the generation of TDs at the regrowth interface. Hence, we succeeded in suppressing the generation of TDs by a low growth rate, realized by a low-pressure condition at an initial growth stage. These findings are valuable for the productivity enhancement of high-quality GaN wafers and help the widespread of GaN-based devices.

Funder

Japan Society for the Promotion of Science

Ministry of the Environment

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3