Abstract
Abstract
Molecular dynamics simulations were performed to understand the gas-surface interactions during silicon nitride (SiN) plasma-enhanced atomic layer etching (PE-ALE) processes with argon (Ar), krypton (Kr), and xenon (Xe) ion irradiations. Changes in the surface height, penetration depths of hydrofluorocarbon (HFC) species, and damaged layer thickness were examined over five PE-ALE cycles. The results showed that the PE-ALE process with Ar+ ions etched the SiN surface more efficiently than those with Kr+ or Xe+ ions under the otherwise same conditions. Slower etching in the case of Kr+ or Xe+ ion irradiation is likely caused by the accumulation of HFC species. It was also observed that the damaged layer thicknesses of the etched surfaces are nearly the same among those with Ar+, Kr+, and Xe+ ion irradiations.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献