Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy

Author:

Takino JunichiORCID,Sumi Tomoaki,Okayama Yoshio,Kitamoto Akira,Usami Shigeyoshi,Imanishi Masayuki,Yoshimura Masashi,Mori Yusuke

Abstract

Abstract GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inverted pyramidal pits, called three-dimensional (3D) growth mode. This mode reduced TDD from 3.8 × 106 cm−2 to 2.0 × 104 cm−2 for 1 mm thick growth because the threading dislocations (TDs) converged to the center of each pit. Moreover, when the crystal surface after polishing was observed by photoluminescence measurement, peculiar floral designs reflecting the distribution of oxygen concentration were observed over the entire surface. In addition, the etch pits exhibited TDs in the center of each floral design. On the basis of our results, we proposed that the 3D-OVPE-GaN will serve as a key material for improving the performance of vertical GaN devices.

Funder

Advanced Low Carbon Technology Research and Development Program

Ministry of Environment

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3