Comprehensive physical and electrical characterizations of NO nitrided SiO2/4H-SiC(112̄0) interfaces

Author:

Nakanuma TakatoORCID,Iwakata Yu,Watanabe Arisa,Hosoi TakujiORCID,Kobayashi TakumaORCID,Sometani MitsuruORCID,Okamoto MitsuoORCID,Yoshigoe AkitakaORCID,Shimura TakayoshiORCID,Watanabe HeijiORCID

Abstract

Abstract Nitridation of SiO2/4H-SiC(112̄0) interfaces with post-oxidation annealing in an NO ambient (NO-POA) and its impact on the electrical properties were investigated. Sub-nm-resolution nitrogen depth profiling at the interfaces was conducted by using a scanning X-ray photoelectron spectroscopy microprobe. The results showed that nitrogen atoms were incorporated just at the interface and that interface nitridation proceeded much faster than at SiO2/SiC(0001) interfaces, resulting in a 2.3 times higher nitrogen concentration. Electrical characterizations of metal-oxide-semiconductor capacitors were conducted through capacitance–voltage (CV) measurements in the dark and under illumination with ultraviolet light to evaluate the interface defects near the conduction and valence band edges and those causing hysteresis and shifting of the CV curves. While all of these defects were passivated with the progress of the interface nitridation, excessive nitridation resulted in degradation of the MOS capacitors. The optimal conditions for NO-POA are discussed on the basis of these experimental findings.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3