Thermodynamic analysis of β-Ga2O3 growth by molecular beam epitaxy

Author:

Togashi RieORCID,Ishida Haruka,Goto KenORCID,Higashiwaki MasatakaORCID,Kumagai YoshinaoORCID

Abstract

Abstract Thermodynamic analyses of β-Ga2O3 growth by both ozone and plasma-assisted molecular beam epitaxy (MBE) were performed. In either case, the growth mechanism was found to differ depending on whether the input VI/III ratio was above or below 1.5. Under O-rich conditions (VI/III > 1.5), the driving force for β-Ga2O3 growth ( Δ P Ga 2 O 3 ) was determined to increase linearly with increasing Ga input partial pressure ( P Ga o ) because almost all the supplied Ga was used for the growth of the β-Ga2O3. In contrast, Ga-rich conditions (VI/III < 1.5) caused Δ P Ga 2 O 3 to decrease. Etching of the β-Ga2O3 occurred with increasing P Ga o due to the formation of volatile Ga2O. This work also demonstrated that the use of ozone allowed growth at higher temperatures than the use of O radicals. The calculated results were in good agreement with experimental values, indicating that β-Ga2O3 growth by MBE can be explained by thermodynamics.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3