Composition dependence of ferroelectric properties in (111)-oriented epitaxial HfO2-CeO2 solid solution films

Author:

Hirai Koji,Shiraishi TakahisaORCID,Yamaoka Wakiko,Tsurumaru Risako,Inoue Yukari,Funakubo HiroshiORCID

Abstract

Abstract The composition dependence of ferroelectric properties was investigated for (111)-oriented epitaxial HfO2-CeO2 solid solution films. Twenty nanometer thick films with different compositions were prepared on (111)ITO//(111)YSZ substrates at room temperature by pulsed laser deposition and subsequent heat treatment at 1000 °C under atmospheric N2 or O2 gas flow. All the films had fluorite structures, and their crystal symmetries changed from monoclinic through orthorhombic to tetragonal/cubic phases as x increased for the (Hf1−x Ce x )O2 (x = 0.12–0.25) films. The orthorhombic phase was confirmed by X-ray diffraction analysis for films with x = 0.15 and 0.17. On the other hand, ferroelectric properties were observed in films with x = 0.15–0.20, suggesting that a field-induced phase transition takes place for films with x = 0.20. The film composition showing ferroelectricity was the widest range of doping concentration for reported epitaxial HfO2-based films. Their remanent polarization (P r) and coercive field (E c) were almost identical, at 17–19 μC cm−2 and 2.0–3.0 MV cm−1. This wide ferroelectric composition range with relatively similar ferroelectricity is due to the solid solution of the same fluorite structure of HfO2 and CeO2 with monoclinic and cubic symmetries, that are respectively lower and higher crystal symmetries of the ferroelectric orthorhombic phase.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3