Implementation of hyperbolic complex numbers in Julia language

Author:

Korolkova Anna V.ORCID,Gevorkyan Migran N.ORCID,Kulyabov Dmitry S.ORCID

Abstract

Hyperbolic complex numbers are used in the description of hyperbolic spaces. One of the well-known examples of such spaces is the Minkowski space, which plays a leading role in the problems of the special theory of relativity and electrodynamics. However, such numbers are not very common in different programming languages. Of interest is the implementation of hyperbolic complex in scientific programming languages, in particular, in the Julia language. The Julia language is based on the concept of multiple dispatch. This concept is an extension of the concept of polymorphism for object-oriented programming languages. To implement hyperbolic complex numbers, the multiple dispatching approach of the Julia language was used. The result is a library that implements hyperbolic numbers. Based on the results of the study, we can conclude that the concept of multiple dispatching in scientific programming languages is convenient and natural.

Publisher

Peoples' Friendship University of Russia

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Reference16 articles.

1. Julia: A Fresh Approach to Numerical Computing

2. M. N. Gevorkyan, D. S. Kulyabov, and L. A. Sevastyanov, “Review of Julia programming language for scientific computing,” in The 6th International Conference “Distributed Computing and Grid-technologies in Science and Education”, 2014, p. 27.

3. T. E. Oliphant, Guide to NumPy, 2nd. CreateSpace Independent Publishing Platform, 2015.

4. Julia subtyping: a rational reconstruction

5. Message Dispatch on Pipelined Processors

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of analytic projective geometry for computer graphics;Программирование;2024-04-15

2. Implementation of Analytic Projective Geometry for Computer Graphics;Programming and Computer Software;2024-04

3. Julia language features for processing statistical data;Discrete and Continuous Models and Applied Computational Science;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3