Julia subtyping: a rational reconstruction

Author:

Zappa Nardelli Francesco1,Belyakova Julia2,Pelenitsyn Artem2,Chung Benjamin3,Bezanson Jeff4,Vitek Jan5

Affiliation:

1. Inria, France / Northeastern University, USA

2. Czech Technical University, Czechia

3. Northeastern University, USA

4. Julia Computing, USA

5. Northeastern University, USA / Czech Technical University, Czechia

Abstract

Programming languages that support multiple dispatch rely on an expressive notion of subtyping to specify method applicability. In these languages, type annotations on method declarations are used to select, out of a potentially large set of methods, the one that is most appropriate for a particular tuple of arguments. Julia is a language for scientific computing built around multiple dispatch and an expressive subtyping relation. This paper provides the first formal definition of Julia's subtype relation and motivates its design. We validate our specification empirically with an implementation of our definition that we compare against the existing Julia implementation on a collection of real-world programs. Our subtype implementation differs on 122 subtype tests out of 6,014,476. The first 120 differences are due to a bug in Julia that was fixed once reported; the remaining 2 are under discussion.

Funder

National Science Foundation

European Research Council

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decidable Subtyping of Existential Types for Julia;Proceedings of the ACM on Programming Languages;2024-06-20

2. Extremes.jl: Extreme Value Analysis in Julia;Journal of Statistical Software;2024

3. Approximating Type Stability in the Julia JIT (Work in Progress);Proceedings of the 15th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages;2023-10-18

4. Structured platform-aware programming;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

5. Potential of the Julia Programming Language for High Energy Physics Computing;Computing and Software for Big Science;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3