Affiliation:
1. RUDN University
2. Joint Institute for Nuclear Research
Abstract
In their research, the authors actively exploit different branches of geometry. For geometric constructions, computer algebra approaches and systems are used. Currently, we are interested in computer geometry, more specifically, the implementation of computer graphics. The use of the projective space and homogeneous coordinates has actually become a standard in modern computer graphics. In other words, the problem is reduced to the application of analytic projective geometry. The authors failed to find a computer algebra system that could implement projective geometry in its entirety. Therefore, it was decided to partially implement computer algebra for visualization of algebraic relations. For this purpose, the Asymptote system was employed.
Publisher
The Russian Academy of Sciences
Reference20 articles.
1. Korolkova A.V., Gevorkyan M.N., Kulyabov D.S. Implementation of hyperboliccomplex numbers in Julia language, Discrete Contin. Models Appl. Comput. Sci., 2022, vol. 30, no. 4, pp. 318–329.
2. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. Complex numbers for relativistic operations, 2021.
3. Kulyabov D.S., Korolkova A.V., Gevorkyan M.N. Hyperbolic numbers as Einstein numbers, J Phys.: Conf. Ser., 2020, vol. 1557, p. 012027.
4. Gevorkyan M.N., Korolkova A.V., Kulyabov D.S. Approaches to the implementation of generalized complex numbers in the Julia language, Workshop on Information Technology and Scientific Computing in the framework of the X Int. Conf. Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM), Kulyabov, D.S., Samouylov, K.E., and Sevastianov, L.A., Eds., 2020, vol. 2639, pp. 141–157.
5. Gevorkyan M.N., Korol’kova A.V., Kulyabov D.S. Implementation of geometric algebra in symbolic computation systems, Programmirovanie, 2023, no. 1, pp. 48–55.