Abstract
When presenting special relativity, it is customary to single out the so-called paradoxes. One of these paradoxes is the formal occurrence of speeds exceeding the speed of light. An essential part of such paradoxes arises from the incompleteness of the relativistic calculus of velocities. In special relativity, the additive group is used for velocities. However, the use of only group operations imposes artificial restrictions on possible computations. Naive expansion to vector space is usually done by using non-relativistic operations. We propose to consider arithmetic operations in the special theory of relativity in the framework of the Cayley–Klein model for projective spaces. We show that such paradoxes do not arise in the framework of the proposed relativistic extension of algebraic operations.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献