Identification of key genes and pathways in endometriosis by integrated expression profiles analysis

Author:

Cui Ding1,Liu Yang1,Ma Junyan1,Lin Kaiqing2,Xu Kaihong2,Lin Jun2

Affiliation:

1. Department of Laboratory, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

2. Department of Gynecology and Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract

The purpose of this study was to integrate the existing expression profile data on endometriosis (EM)-related tissues in order to identify the differentially expressed genes. In this study, three series of raw expression data were downloaded from GEO database. Differentially expressed genes (DEGs) in three tissue types were screened. GO, KEGG pathway enrichment analysis, core differential genes (CDGs) protein–protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) were performed, finally, the dysregulation of Hippo pathway in ectopic endometrium (EC) was detected by Western blotting. A total of 1,811 DEGs between eutopic (EU) and normal endometrium (NE), 5,947 DEGs between EC and EU, and 3,192 DEGs between EC and NE datasets were identified. After screening, 394 CDGs were obtained, and 5 hub genes identified in the PPI network. CDGs enrichment and WGCNA network analysis revealed cell proliferation, differentiation, migration and other biological processes, Hippo and Wnt signaling pathways, and a variety of tumor-related pathways. Western blotting results showed that YAP/TAZ was upregulated, and MOB1, pMOB1, SAV1, LATS1 and LATS2 were downregulated in EC. Moreover, CDGs, especially the hub genes, are potential biomarkers and therapeutic targets. Finally, the Hippo pathway might play a key role in the development of endometriosis.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3