Understanding the Molecular Landscape of Endometriosis: A Bioinformatics Approach to Uncover Signaling Pathways and Hub Genes

Author:

Tian JunhuaORCID,Liu XiaochunORCID

Abstract

Background: Endometriosis is a chronic gynecological disorder characterized by the ectopic growth of endometrial tissue outside the uterus, leading to debilitating pain and infertility in affected women. Despite its prevalence and clinical significance, the molecular mechanisms underlying the progression of endometriosis remain poorly understood. This study employs bioinformatics tools and molecular docking simulations to unravel the intricate genetic and molecular networks associated with endometriosis progression. Objectives: The primary objectives of this research are to identify differentially expressed genes (DEGs) linked to endometriosis, elucidate associated biological pathways using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), construct a Protein-Protein Interaction (PPI) network to identify hub genes, and perform molecular docking simulations to explore potential ligand-protein interactions associated with endometriosis. Methods: Microarray data from Homo sapiens, specifically Accession: GDS3092 Series = GSE5108 (Platform: GPL2895), were retrieved from the NCBI Gene Expression Omnibus (GEO). The data underwent rigorous preprocessing and DEG analysis using NCBI GEO2. Database for Annotation, Visualization, and Integrated Discovery analysis was employed for functional annotation, and a PPI network was constructed using the STITCH database and Cytoscape 3.8.2. Molecular docking simulations against target proteins associated with endometriosis were conducted using MVD 7.0. Results: A total of 1 911 unique elements were identified as DEGs associated with endometriosis from the microarray data. Database for Annotation, Visualization, and Integrated Discovery analysis revealed pathways and biological characteristics positively and negatively correlated with endometriosis. Hub genes, including BCL2, CCNA2, CDK7, EGF, GAS6, MAP3K7, and TAB2, were identified through PPI network analysis. Molecular docking simulations highlighted potential ligands, such as Quercetin-3-o-galactopyranoside and Kushenol E, exhibiting favorable interactions with target proteins associated with endometriosis. Conclusions: This study provides insights into the molecular signatures, pathways, and hub genes associated with endometriosis. Utilizing DAVID in this study clarifies biological pathways associated with endometriosis, revealing insights into intricate genetic networks. Molecular docking simulations identified ligands for further exploration in therapeutic interventions. The consistent efficacy of these ligands across diverse targets suggests broad-spectrum effectiveness, encouraging further exploration for potential therapeutic interventions. The study contributes to a deeper understanding of endometriosis pathogenesis, paving the way for targeted therapies and precision medicine approaches to improve patient outcomes. These findings advance our understanding of the molecular mechanisms in endometriosis (EMS), offering promising avenues for future research and therapeutic development in addressing this complex condition.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3