The DNA demethylation-regulated SFRP2 dictates the progression of endometriosis via activation of the Wnt/β-catenin signaling pathway

Author:

Yang Mei,Li Lin,Huang Xiaojie,Xing Hui,Hong Li,Jiang Chunfan

Abstract

Abstract Background Endometriosis cause decreases in life quality and pelvic pain in reproductive-age women. Methylation abnormalities played a functional role in the progression of endometriosis, this study aimed to explore the mechanisms mediated by abnormal methylation in the development of EMS. Materials and methods Next-generation sequencing dataset and methylation profiling dataset were used to screen out the key gene SFRP2. Western bolt, Real-time PCR, Aza-2?deoxycytidine treatment, luciferase reporter assay, Methylation-specific PCR , Bisulfite sequencing PCR and lentivirus infection were carried out to detect the methylation status and signaling pathway with the primary epithelial cells. Transwell assay and wound scratch assay were implemented to observe the differences of migration ability with the intervening with the expression of SFRP2. Results To define the role of the DNA methylation-regulated genes in the pathogenesis of EMS, we performed both DNA methylomic and expression analyses of ectopic endometrium and ectopic endometrium epithelial cells(EEECs) and found that SFRP2 is demethylated/upregulated in ectopic endometrium and EEECs. The expression of lentivirus carrying SFRP2 cDNA up-regulates the activity of Wnt signaling and the protein expression of ?-catenin in EEECs. SFRP2 impact on the invasion and migration of ectopic endometrium by modulating the activities of the Wnt/?-catenin signaling pathway. The invasion and migration ability of EEECs were significantly strengthened after demethylation treatment including 5-Aza and the knockdown of DNMT1. Conclusion In summary, the increased SFRP2 expression-induced Wnt/?-catenin signaling due to the demethylation of the SFRP2 promoter plays an important role in the pathogenesis of EMS, suggesting that SFRP2 might be a therapeutic target for EMS treatment.

Funder

Science and technology project of Xiangyang Central Hospita

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3