13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis ofLactococcus lactisreveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses

Author:

Azizan Kamalrul Azlan1,Ressom Habtom W.2,Mendoza Eduardo R.34,Baharum Syarul Nataqain1

Affiliation:

1. Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia

2. Departments of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America

3. Institute of Mathematics, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines

4. Membrane Biochemistry Group, Max Planck Institute of Biochemistry, Planegg, Germany

Abstract

Lactococcus lactissubsp.cremorisMG1363 is an important starter culture for dairy fermentation. During industrial fermentations,L. lactisis constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response ofL. lactisto several stresses has been described, the adaptation mechanisms at the level ofin vivofluxes have seldom been described. To gain insights into cellular metabolism,13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism ofL. lactiswhen subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability ofL. lactis’central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) inL. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering inL. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of howL. lactisregulates central metabolism under various conditions.

Funder

Ministry of Science, Technology and Innovation Malaysia (MOSTI)

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3