The choice of reference point for computing sagittal plane angular momentum affects inferences about dynamic balance

Author:

Liu Chang1,Park Sungwoo2,Finley James13

Affiliation:

1. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America

2. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America

3. Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States of America

Abstract

Background Measures of whole-body angular momentum in the sagittal plane are commonly used to characterize dynamic balance during human walking. To compute angular momentum, one must specify a reference point about which momentum is calculated. Although biomechanists primarily compute angular momentum about the center of mass (CoM), momentum-based controllers for humanoid robots often use the center of pressure. Here, we asked if the choice of the reference point influences interpretations of how dynamic balance is controlled in the sagittal plane during perturbed walking. Methods Eleven healthy young individuals walked on a dual-belt treadmill at their self-selected speed. Balance disturbances were generated by treadmill accelerations of varying magnitudes and directions. We computed angular momentum about two reference points: (1) the CoM or (2) the leading edge of the base of support and then projected it along the mediolateral axes that pass through either of the reference points as the sagittal plane angular momentum. We also performed principal component analysis to determine if the choice of reference point influences our interpretations of how intersegmental coordination patterns contribute to perturbation recovery. Results We found that the peak angular momentum was correlated with perturbation amplitude and the slope of this relationship did not differ between reference points. One advantage of using a reference point at the CoM is that one can easily determine how the momenta from contralateral limbs, such as the left and right legs, offset one another to regulate the whole-body angular momentum. Alternatively, analysis of coordination patterns referenced to the leading edge of the base of support may provide more insight into the inverted-pendulum dynamics of walking during responses to sudden losses of balance.

Funder

The Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3