Generalizability of foot placement control strategies during unperturbed and perturbed gait

Author:

Liu Chang1ORCID,Valero-Cuevas Francisco J.123ORCID,Finley James M.123ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Southern California , Los Angeles, CA, USA

2. Division of Biokinesiology and Physical Therapy, University of Southern California , Los Angeles, CA, USA

3. Neuroscience Graduate Program, University of Southern California , Los Angeles, CA, USA

Abstract

Control of foot placement is an essential strategy for maintaining balance during walking. During unperturbed, steady-state walking, foot placement can be accurately described as a linear function of the body’s centre of mass (CoM) state at midstance. However, it is uncertain if this mapping from CoM state to foot placement generalizes to larger perturbations that could potentially cause falls. Recovery from these perturbations may require reactive control strategies not observed during unperturbed walking. Here, we used unpredictable changes in treadmill belt speed to assess the generalizability of foot placement mappings identified during unperturbed walking. We found that foot placement mappings generalized poorly from unperturbed to perturbed walking and differed for forward perturbation versus backward perturbation. We also used the singular value decomposition of the mapping matrix to reveal that people were more sensitive to backward versus forward perturbations. Together, these results indicate that a single linear mapping cannot describe the foot placement control during both forward and backward losses of balance induced by treadmill belt speed perturbations. Better characterization of human balance control strategies could improve our understanding of why different neuromotor disorders result in heightened fall risk and inform the design of controllers for balance-assisting devices.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3