Sodicity stress differently influences physiological traits and anti-oxidant enzymes in pear and peach cultivars

Author:

Singh Anshuman12ORCID,Kumar Ashwani1,Sharma Parbodh Chander1ORCID,Kumar Raj1,Yadav Rajender Kumar1

Affiliation:

1. ICAR-Central Soil Salinity Research Institute, Karnal, Karnal, Haryana, India

2. ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India

Abstract

Background The growth and physiological responses to sodicity stress of pear and peach are poorly understood. Insights into how sodicity stress alters tree physiology remain vital to developing salt tolerant scion and rootstock cultivars. Methods The effects of sodicity stress (soil pHs ~8.8) on tree growth and physiological traits of field grown trees of pear cultivars Punjab Beauty and Patharnakh, and peach cultivars Partap and Shan-e-Punjab were recorded using standard procedures. Sodicity-induced changes in oxidative stressors, proline, anti-oxidant enzymes and leaf ions were measured to draw inferences. Results Sodicity-induced reductions in vegetative growth were particularly marked in Patharnakh pear and Partap peach compared with other cultivars. Although sodicity stress triggered a significant increase in leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2), their levels relative to controls were much higher in peach than in pear; reflecting that peach suffered from greater oxidative stress. Interestingly, MDA and H2O2 levels did not seem to be deleterious enough to trigger proline-induced osmotic adjustment in pears. The activities of anti-oxidant enzymes strongly varied with the cultivar; specifically, the sodicity-induced increases in CAT and SOD activities were much higher in Punjab Beauty pear and Shan-e-Punjab peach. Principal Component Analysis revealed an explicit convergence between CAT and SOD activities in Punjab Beauty and Shan-e-Punjab cultivars in response to sodicity-induced oxidative stress. Correlation analysis revealed that leaf Na+ strongly inhibited tree growth in peach than in pear. Leaf K+ and proline were found to be the major osmolytes in sodicity-stressed pear and peach cultivars, respectively. Conclusions We have for the first time studied the effects of sodicity stress on important tree growth and physiological traits of commercially important pear and peach cultivars. Our findings revealed a marked suppressive effect of sodicity stress on tree growth in peach than in pear. The sodicity-induced upticks in leaf malondialdehyde, hydrogen peroxide and Na+ seemed to induce proline-mediated osmotic adjustment in peach but not in pear. The overall better sodicity tolerance in pear compared to peach was ascribed to increased activities of anti-oxidant enzymes catalase and superoxide dismutase enzymes together with restricted Na+ uptake and better leaf K+ levels. Further investigations are needed to elucidate the effects of sodicity stress on genetic and transcriptional changes, and on fruit yield and quality.

Funder

Rashtriya Krishi Vikas Yojana

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3