Effects of knee extension with different speeds of movement on muscle and cerebral oxygenation

Author:

Formenti Damiano1,Perpetuini David23,Iodice Pierpaolo45,Cardone Daniela23,Michielon Giovanni1,Scurati Raffaele1,Alberti Giampietro1,Merla Arcangelo23

Affiliation:

1. Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy

2. Department of Neuroscience, Imaging, and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy

3. Infrared Imaging Lab, Centro ITAB-Institute for Advanced Biomedical Technologies, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy

4. Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy

5. Centre d’Etude des Transformations des Activités Physiques et Sportives (CETAPS), University of Rouen Normandy, Mont-Saint-Aignan, France

Abstract

Background One of the mechanisms responsible for enhancing muscular hypertrophy is the high metabolic stress associated with a reduced muscular oxygenation occurring during exercise, which can be achieved by reducing the speed of movement. Studies have tested that lowered muscle oxygenation artificially induced by an inflatable cuff, could provoke changes in prefrontal cortex oxygenation, hence, to central fatigue. It was hypothesized that (1) exercising with a slow speed of movement would result in greater increase in cerebral and greater decrease in muscle oxygenation compared with exercises of faster speed and (2) the amount of oxygenation increase in the ipsilateral prefrontal cortex would be lower than the contralateral one. Methods An ISS Imagent frequency domain near infrared spectroscopy (NIRS) system was used to quantify oxygenation changes in the vastus lateralis muscle and prefrontal cortex (contra- and ipsilateral) during unilateral resistance exercises with different speeds of movement to voluntary fatigue. After one maximal repetition (1RM) test, eight subjects performed three sets of unilateral knee extensions (∼50% of 1RM), separated by 2 min rest periods, following the pace of 1 s, 3 s and 5 s for both concentric and eccentric phases, in a random order, during separate sessions. The amount of change for NIRS parameters for muscle (ΔHb: deoxyhemoglobin, ΔHbO: oxyhemoglobin, ΔHbT: total hemoglobin, ΔStO2: oxygen saturation) were quantified and compared between conditions and sets by two-way ANOVA RM. Differences in NIRS parameters between contra- and ipsilateral (lobe) prefrontal cortex and conditions were tested. Results Exercising with slow speed of movement was associated to larger muscle deoxygenation than normal speed of movement, as revealed by significant interaction (set × condition) for ΔHb (p = 0.01), and by significant main effects of condition for ΔHbO (p = 0.007) and ΔStO2 (p = 0.016). With regards to the prefrontal cortex, contralateral lobe showed larger oxygenation increase than the ipsilateral one for ΔHb, ΔHbO, ΔHbT, ΔStO2 in each set (main effect of lobe: p < 0.05). Main effects of condition were significant only in set1 for all the parameters, and significant interaction lobe × condition was found only for ΔHb in set1 (p < 0.05). Discussion These findings provided evidence that speed of movement influences the amount of muscle oxygenation. Since the lack of oxygen in muscle is associated to increased metabolic stress, manipulating the speed of movement may be useful in planning resistance-training programs. Moreover, consistent oxygenation increases in both right and left prefrontal lobes were found, suggesting a complementary interaction between the ipsi- and contralateral prefrontal cortex, which also seems related to fatigue.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3