Can Data-Driven Supervised Machine Learning Approaches Applied to Infrared Thermal Imaging Data Estimate Muscular Activity and Fatigue?

Author:

Perpetuini DavidORCID,Formenti DamianoORCID,Cardone DanielaORCID,Trecroci AthosORCID,Rossi AlessioORCID,Di Credico AndreaORCID,Merati GiampieroORCID,Alberti Giampietro,Di Baldassarre AngelaORCID,Merla Arcangelo

Abstract

Surface electromyography (sEMG) is the acquisition, from the skin, of the electrical signal produced by muscle activation. Usually, sEMG is measured through electrodes with electrolytic gel, which often causes skin irritation. Capacitive contactless electrodes have been developed to overcome this limitation. However, contactless EMG devices are still sensitive to motion artifacts and often not comfortable for long monitoring. In this study, a non-invasive contactless method to estimate parameters indicative of muscular activity and fatigue, as they are assessed by EMG, through infrared thermal imaging (IRI) and cross-validated machine learning (ML) approaches is described. Particularly, 10 healthy participants underwent five series of bodyweight squats until exhaustion interspersed by 1 min of rest. During exercising, the vastus medialis activity and its temperature were measured through sEMG and IRI, respectively. The EMG average rectified value (ARV) and the median frequency of the power spectral density (MDF) of each series were estimated through several ML approaches applied to IRI features, obtaining good estimation performances (r = 0.886, p < 0.001 for ARV, and r = 0.661, p < 0.001 for MDF). Although EMG and IRI measure physiological processes of a different nature and are not interchangeable, these results suggest a potential link between skin temperature and muscle activity and fatigue, fostering the employment of contactless methods to deliver metrics of muscular activity in a non-invasive and comfortable manner in sports and clinical applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relationship Between Thermography Assessment and Hamstring Isometric Test in Amateur Soccer Players;Artificial Intelligence over Infrared Images for Medical Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3