Brain activation associated with low‐ and high‐intensity concentric versus eccentric isokinetic contractions of the biceps brachii: An fNIRS study

Author:

Teo Wei‐Peng1,Tan Clara Xinru1,Goodwill Alicia M.1,Mohammad Saqif1,Ang Yi‐Xuan1,Latella Christopher23

Affiliation:

1. Physical Education and Sport Science Academic Group, National Institute of Education Nanyang Technological University Singapore Singapore

2. Neurophysiology Research Laboratory, School of Medical and Health Sciences Edith Cowan University Perth Western Australia Australia

3. School of Medical and Health Sciences, Centre for Human Performance Edith Cowan University Perth Western Australia Australia

Abstract

AbstractStudies have shown that neural responses following concentric (CON) and eccentric (ECC) muscle contractions are different, which suggests differences in motor control associated with CON and ECC contractions. This study aims to determine brain activation of the left primary motor cortex (M1) and left and right dorsolateral prefrontal cortices (DLPFCs) during ECC and CON of the right bicep brachii (BB) muscle at low‐ and high‐contraction intensities. Eighteen young adults (13M/5F, 21–35 years) were recruited to participate in one familiarization and two testing sessions in a randomized crossover design. During each testing session, participants performed either ECC or CON contractions of the BB (3 sets × 8 reps) at low‐ (25% of maximum ECC/CON, 45°/s) and high‐intensity (75% of maximum ECC/CON, 45°/s) on an isokinetic dynamometer. Eleven‐channel functional near‐infrared spectroscopy was used to measure changes in oxyhemoglobin (O2Hb) from the left M1, and left and right DLPFC during ECC and CON contractions. Maximum torque for ECC was higher than CON (43.3 ± 14.1 vs. 46.2 ± 15.7 N m, p = 0.025); however, no differences in O2Hb were observed between contraction types at low or high intensities in measured brain regions. High‐intensity ECC and CON contractions resulted in greater increases in O2Hb of M1 and bilateral DLPFC compared to low‐intensity ECC and CON contractions (p = 0.014). Our findings suggest no differences in O2Hb responses between contraction types at high and low intensities. High‐contraction intensities resulted in greater brain activation of the M1 and bilateral DLPFC, which may have implications for neurorehabilitation to increase central adaptations from exercise.

Funder

Nanyang Technological University

Publisher

Wiley

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3