Abstract
Overexploitation of fisheries is a worldwide problem, which is leading to a large loss of diversity, and affects human communities indirectly through the loss of traditional jobs, cultural heritage, etc. To address this issue, governments have started accumulating data on fishing activities, to determine biomass extraction rates, and fisheries status. However, these data are often estimated from small samplings, which can lead to partially inaccurate assessments. Fishing can also benefit of the digitization process that many industries are undergoing. Wholesale fish markets, where vessels disembark, can be the point of contact to retrieve valuable information on biomass extraction rates, and can do so automatically. Fine-grained knowledge about the fish species, quantities, sizes, etc. that are caught can be therefore very valuable to all stakeholders, and particularly decision-makers regarding fisheries conservation, sustainable, and long-term exploitation. In this regard, this article presents a full workflow for fish instance segmentation, species classification, and size estimation from uncalibrated images of fish trays at the fish market, in order to automate information extraction that can be helpful in such scenarios. Our results on fish instance segmentation and species classification show an overall mean average precision (mAP) at 50% intersection-over-union (IoU) of 70.42%, while fish size estimation shows a mean average error (MAE) of only 1.27 cm.
Funder
Biodiversity Foundation
Pleamar Programme
European Maritime and Fisheries Fund (EMFF) Deepfish/Deepfish 2 Projects
The European Regional Development Fund
“CHAN-TWIN” Project
HORIZON-MSCA-2021-SE-0
REMARKABLE, Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献