Author:
,Jin Sang-Yeup,Choi Heung-Bae,Han Myeong-Soo,Lee Hyo-tae,Son Young-Tae
Publisher
The Korean Society of Marine Environment and Safety
Reference17 articles.
1. Akgül, T. , N. Çalik, and B. U. Töreyin (2020), Bulanık Sualtı Görüntülerinde Derin Öğrenme Tabanlı Balık Tespiti Deep Learning-Based Fish Detection in Turbid Underwater Images.
2. Bai, R. , M. Wang, Z. Zhang, J. Lu, and F. Shen (2023), Automated Construction Site Monitoring Based on Improved YOLOv8-seg Instance Segmentation Algorithm. IEEE Access, 11, 139082-139096.
3. Bolya, D. , C. Zhou, F. Xiao, and Y. J. Lee (2019), YOLACT: Real-Time Instance Segmentation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 9156-9165.
4. Chen, L. -C. , G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2017), DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (arXiv:1606.00915). arXiv. http://arxiv.org/abs/1606.00915.
5. Climent-Perez, P. , A. Galán-Cuenca, N. E. Garcia-d’Urso, M. Saval-Calvo, J. Azorin-Lopez, and A. Fuster-Guillo (2024), Simultaneous, vision-based fish instance segmentation, species classification and size regression. PeerJ Computer Science, 10, e1770.