Affiliation:
1. IMEDEA (CSIC-UIB), Illes Balears, Spain
2. Universitat de les Illes Balears, Illes Balears, Spain
Abstract
Abstract
The dynamics of fish length distribution is a key input for understanding the fish population dynamics and taking informed management decisions on exploited stocks. Nevertheless, in most fisheries, the length of landed fish is still made by hand. As a result, length estimation is precise at fish level, but due to the inherent high costs of manual sampling, the sample size tends to be small. Accordingly, the precision of population-level estimates is often suboptimal and prone to bias when properly stratified sampling programmes are not affordable. Recent applications of artificial intelligence to fisheries science are opening a promising opportunity for the massive sampling of fish catches. Here, we present the results obtained using a deep convolutional network (Mask R-CNN) for unsupervised (i.e. fully automatic) European hake length estimation from images of fish boxes automatically collected at the auction centre. The estimated mean of fish lengths at the box level is accurate; for average lengths ranging 20–40 cm, the root-mean-square deviation was 1.9 cm, and maximum deviation between the estimated and the measured mean body length was 4.0 cm. We discuss the challenges and opportunities that arise with the use of this technology to improve data acquisition in fisheries.
Funder
FOTOPEIX and FOTOPEX2
Fundación Biodiversidad
OPMALLORCAMAR
Unitat Associada IMEDEA-LIMIA
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献