Tuning path tracking controllers for autonomous cars using reinforcement learning

Author:

Vilaça Carrasco Ana1,Silva Sequeira João1

Affiliation:

1. Lisbon University, Instituto Superior Técnico, Lisbon, Portugal

Abstract

This article proposes an adaptable path tracking control system, based on reinforcement learning (RL), for autonomous cars. A four-parameter controller shapes the behaviour of the vehicle to navigate lane changes and roundabouts. The tuning of the tracker uses an ‘educated’ Q-Learning algorithm to minimize the lateral and steering trajectory errors, this being a key contribution of this article. The CARLA (CAR Learning to Act) simulator was used both for training and testing. The results show the vehicle is able to adapt its behaviour to the different types of reference trajectories, navigating safely with low tracking errors. The use of a robot operating system (ROS) bridge between CARLA and the tracker (i) results in a realistic system, and (ii) simplifies the replacement of CARLA by a real vehicle, as in a hardware-in-the-loop system. Another contribution of this article is the framework for the dependability of the overall architecture based on stability results of non-smooth systems, presented at the end of this article.

Funder

FCT projects

Publisher

PeerJ

Subject

General Computer Science

Reference46 articles.

1. Trajectory control of mobile robots using type-2 fuzzy-neural PID controller;Ahmed;IFAC Papers Online,2015

2. Autonomous vehicles: the cybersecurity vulnerabilities and countermeasures for big data communication;Algarni;Symmetry,2022

3. Differential Inclusions

4. Basic concepts and taxonomy of dependable and secure computing;Avizienis;IEEE Transactions on Dependable and Secure Computing,2004

5. End to end learning for self-driving cars;Bojarski,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of vision-based reinforcement learning for drone navigation;International Journal of Intelligent Robotics and Applications;2024-06-28

2. Tuning path tracking controllers for autonomous cars using reinforcement learning;PeerJ Computer Science;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3