A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images

Author:

Ali Abder-Rahman1,Li Jingpeng1,Yang Guang2ORCID,O’Shea Sally Jane3

Affiliation:

1. Faculty of Natural Sciences, Computing Science and Mathematics, University of Stirling, Stirling, UK

2. National Heart and Lung Institute, Imperial College London, London, UK

3. Mater Private Hospital, Cork, Ireland

Abstract

Skin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively.

Publisher

PeerJ

Subject

General Computer Science

Reference97 articles.

1. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria;Abbasi;JAMA,2004

2. Liver lesion extraction with fuzzy thresholding in contrast enhanced ultrasound images;Ali;International Journal of Computer and Information Engineering,2015

3. Fuzzy c-means based on minkowski distance for liver ct image segmentation;Ali;Intelligent Decision Technologies,2016

4. A deep learning based approach to skin lesion border extraction with a novel edge detector in dermoscopy images;Ali,2019

5. Supervised versus unsupervised deep learning based methods for skin lesion segmentation in dermoscopy images;Ali,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3