SNC_Net: Skin Cancer Detection by Integrating Handcrafted and Deep Learning-Based Features Using Dermoscopy Images

Author:

Naeem Ahmad1ORCID,Anees Tayyaba2ORCID,Khalil Mudassir3,Zahra Kiran4,Naqvi Rizwan Ali5ORCID,Lee Seung-Won6ORCID

Affiliation:

1. Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan

2. Department of Software Engineering, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan

3. Department of Computer Engineering, Bahauddin Zakariya University, Multan 60000, Pakistan

4. Division of Oncology, Washington University, St. Louis, MO 63130, USA

5. Department of AI and Robotics, Sejong University, Seoul 05006, Republic of Korea

6. School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

The medical sciences are facing a major problem with the auto-detection of disease due to the fast growth in population density. Intelligent systems assist medical professionals in early disease detection and also help to provide consistent treatment that reduces the mortality rate. Skin cancer is considered to be the deadliest and most severe kind of cancer. Medical professionals utilize dermoscopy images to make a manual diagnosis of skin cancer. This method is labor-intensive and time-consuming and demands a considerable level of expertise. Automated detection methods are necessary for the early detection of skin cancer. The occurrence of hair and air bubbles in dermoscopic images affects the diagnosis of skin cancer. This research aims to classify eight different types of skin cancer, namely actinic keratosis (AKs), dermatofibroma (DFa), melanoma (MELa), basal cell carcinoma (BCCa), squamous cell carcinoma (SCCa), melanocytic nevus (MNi), vascular lesion (VASn), and benign keratosis (BKs). In this study, we propose SNC_Net, which integrates features derived from dermoscopic images through deep learning (DL) models and handcrafted (HC) feature extraction methods with the aim of improving the performance of the classifier. A convolutional neural network (CNN) is employed for classification. Dermoscopy images from the publicly accessible ISIC 2019 dataset for skin cancer detection is utilized to train and validate the model. The performance of the proposed model is compared with four baseline models, namely EfficientNetB0 (B1), MobileNetV2 (B2), DenseNet-121 (B3), and ResNet-101 (B4), and six state-of-the-art (SOTA) classifiers. With an accuracy of 97.81%, a precision of 98.31%, a recall of 97.89%, and an F1 score of 98.10%, the proposed model outperformed the SOTA classifiers as well as the four baseline models. Moreover, an Ablation study is also performed on the proposed method to validate its performance. The proposed method therefore assists dermatologists and other medical professionals in early skin cancer detection.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3