Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs

Author:

Gunduz Hakan1

Affiliation:

1. Software Engineering Department, Kocaeli University, Kocaeli, Marmara, Turkey

Abstract

Malware harms the confidentiality and integrity of the information that causes material and moral damages to institutions or individuals. This study proposed a malware detection model based on API-call graphs and used Graph Variational Autoencoder (GVAE) to reduce the size of graph node features extracted from Android apk files. GVAE-reduced embeddings were fed to linear-based (SVM) and ensemble-based (LightGBM) models to finalize the malware detection process. To validate the effectiveness of the GVAE-reduced features, recursive feature elimination (RFE) and Fisher score (FS) were applied to select informative feature sets with the same sizes as GVAE-reduced embeddings. The results with RFE and FS selections revealed that LightGBM and RFE-selected 50 features achieved the highest accuracy (0.907) and F-measure (0.852) rates. When we used GVAE-reduced embeddings in the classification, there was an approximate increase of %4 in both models’ accuracy rates. The same performance increase occurred in F-measure rates which directly indicated the improvement in the discrimination powers of the models. The last conducted experiment that combined the strengths of RFE selection and GVAE led to a performance increase compared to only GVAE-reduced embeddings. RFE selection achieved an accuracy rate of 0.967 in LightGBM with the help of selected 30 relevant features from the combination of all GVAE-embeddings.

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. Feature selection using a machine learning to classify a malware;Al-Kasassbeh,2020

2. An efficient android malware prediction using Ensemble machine learning algorithms;Al Sarah;Procedia Computer Science,2021

3. DL-Droid: deep learning based android malware detection using real devices;Alzaylaee;Computers & Security,2020

4. Android malware detection through generative adversarial networks;Amin;Transactions on Emerging Telecommunications Technologies,2019

5. Variational autoencoder based anomaly detection using reconstruction probability;An;Special Lecture on IE,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3