A Kullback-Liebler divergence-based representation algorithm for malware detection

Author:

Aboaoja Faitouri A.12,Zainal Anazida3,Ghaleb Fuad A.1,Alghamdi Norah Saleh3,Saeed Faisal4,Alhuwayji Husayn5

Affiliation:

1. Faculty of Computing, Universiti Teknologi Malaysia, Johor Baru, Johor, Malaysia

2. Faculty of Education-Elgobbah, University of Derna, Libya, Elgobbah, Barka, Libya

3. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

4. DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham, UK

5. Higher Institute of Science and Technology, Qarabulli, Higher Institute of Science and Technology, Qarabulli, Tripoli, Libya

Abstract

Background Malware, malicious software, is the major security concern of the digital realm. Conventional cyber-security solutions are challenged by sophisticated malicious behaviors. Currently, an overlap between malicious and legitimate behaviors causes more difficulties in characterizing those behaviors as malicious or legitimate activities. For instance, evasive malware often mimics legitimate behaviors, and evasion techniques are utilized by legitimate and malicious software. Problem Most of the existing solutions use the traditional term of frequency-inverse document frequency (TF-IDF) technique or its concept to represent malware behaviors. However, the traditional TF-IDF and the developed techniques represent the features, especially the shared ones, inaccurately because those techniques calculate a weight for each feature without considering its distribution in each class; instead, the generated weight is generated based on the distribution of the feature among all the documents. Such presumption can reduce the meaning of those features, and when those features are used to classify malware, they lead to a high false alarms. Method This study proposes a Kullback-Liebler Divergence-based Term Frequency-Probability Class Distribution (KLD-based TF-PCD) algorithm to represent the extracted features based on the differences between the probability distributions of the terms in malware and benign classes. Unlike the existing solution, the proposed algorithm increases the weights of the important features by using the Kullback-Liebler Divergence tool to measure the differences between their probability distributions in malware and benign classes. Results The experimental results show that the proposed KLD-based TF-PCD algorithm achieved an accuracy of 0.972, the false positive rate of 0.037, and the F-measure of 0.978. Such results were significant compared to the related work studies. Thus, the proposed KLD-based TF-PCD algorithm contributes to improving the security of cyberspace. Conclusion New meaningful characteristics have been added by the proposed algorithm to promote the learned knowledge of the classifiers, and thus increase their ability to classify malicious behaviors accurately.

Funder

Princess Nourah bint Abdulrahman University Researchers

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3