Affiliation:
1. APA Research Center, Amirkabir University of Technology, Valiasr Square, Tehran, Iran
2. ESIEA (C + V)O Lab, Laval, France
Abstract
The cyber world is plagued with ever-evolving malware that readily infiltrate all defense mechanisms, operate viciously unbeknownst to the user, and surreptitiously exfiltrate sensitive data. Understanding the inner workings of such malware provides a leverage to effectively combat them. This understanding is pursued often through dynamic analysis which is conducted manually or automatically. Malware authors accordingly, have devised and advanced evasion techniques to thwart or evade these analyses. In this article, we present a comprehensive survey on malware dynamic analysis evasion techniques. In addition, we propose a detailed classification of these techniques and further demonstrate how their efficacy holds against different types of detection and analysis approaches.
Our observations attest that evasive behavior is mostly concerned with detecting and evading sandboxes. The primary tactic of such malware we argue is fingerprinting followed by new trends for reverse Turing test tactic which aims at detecting human interaction. Furthermore, we will posit that the current defensive strategies, beginning with reactive methods to endeavors for more transparent analysis systems, are readily foiled by zero-day fingerprinting techniques or other evasion tactics such as stalling. Accordingly, we would recommend the pursuit of more generic defensive strategies with an emphasis on path exploration techniques that has the potential to thwart all the evasive tactics.
Funder
APA research center at Amirkabir University of Technology, Tehran, Iran
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献