Comparative analysis of BERT and FastText representations on crowdfunding campaign success prediction

Author:

Gunduz Hakan

Abstract

Crowdfunding has become a popular financing method, attracting investors, businesses, and entrepreneurs. However, many campaigns fail to secure funding, making it crucial to reduce participation risks using artificial intelligence (AI). This study investigates the effectiveness of advanced AI techniques in predicting the success of crowdfunding campaigns on Kickstarter by analyzing campaign blurbs. We compare the performance of two widely used text representation models, bidirectional encoder representations from transformers (BERT) and FastText, in conjunction with long-short term memory (LSTM) and gradient boosting machine (GBM) classifiers. Our analysis involves preprocessing campaign blurbs, extracting features using BERT and FastText, and evaluating the predictive performance of these features with LSTM and GBM models. All experimental results show that BERT representations significantly outperform FastText, with the highest accuracy of 0.745 achieved using a fine-tuned BERT model combined with LSTM. These findings highlight the importance of using deep contextual embeddings and the benefits of fine-tuning pre-trained models for domain-specific applications. The results are benchmarked against existing methods, demonstrating the superiority of our approach. This study provides valuable insights for improving predictive models in the crowdfunding domain, offering practical implications for campaign creators and investors.

Publisher

PeerJ

Reference34 articles.

1. Exploring character trigrams for robust arabic text classification: a comparative analysis in the face of vocabulary expansion and misspelled words;Alomari;IEEE Access,2024

2. The economics of crowdfunding platforms;Belleflamme;Information Economics and Policy,2015

3. “Fund me, I am fabulous!” Do narcissistic entrepreneurs succeed or fail in crowdfunding?;Buttice;Personality and Individual Differences,2020

4. Bert: pre-training of deep bidirectional transformers for language understanding;Devlin;ArXiv preprint,2018

5. Launch hard or go home! predicting the success of kickstarter campaigns;Etter,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3