Pedestrian walking speed monitoring at street scale by an in-flight drone

Author:

Jiao Dan,Fei Teng

Abstract

The walking speed of pedestrians is not only a reflection of one’s physiological condition and health status but also a key parameter in the evaluation of the service level of urban facilities and traffic engineering applications, which is important for urban design and planning. Currently, the three main ways to obtain walking speed are based on trails, wearable devices, and images. The first two cannot be popularized in larger open areas, while the image-based approach requires multiple cameras to cooperate in order to extract the walking speed of an entire street, which is costly. In this study, a method for extracting the pedestrian walking speed at a street scale from in-flight drone video is proposed. Pedestrians are detected and tracked by You Only Look Once version 5 (YOLOv5) and Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) algorithms in the video taken from a flying unmanned aerial vehicle (UAV). The distance that pedestrians traveled related to the ground per fixed time interval is calculated using a combined algorithm of Scale-Invariant Feature Transform (SIFT) and random sample consensus (RANSAC) followed by a geometric correction algorithm. Compared to ground truth values, it shows that 90.5% of the corrected walking speed predictions have an absolute error of less than 0.1 m/s. Overall, the method we have proposed is accurate and feasible. A particular advantage of this method is the ability to accurately predict the walking speed of pedestrians without keeping the flight speed of the UAV constant, facilitating accurate measurements by non-specialist technicians. In addition, because of the unrestricted flight range of the UAV, the method can be applied to the entire scale of the street, which assists in a better understanding of how the settings and layouts of urban affect people’s behavior.

Funder

Wuhan University Luojia Young Scholars Talent Program

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Computer Science

Reference62 articles.

1. Modeling pedestrian walking speeds on sidewalks;Al-Azzawi;Journal of Urban Planning and Development,2007

2. Pedestrian tracking from an unmanned aerial vehicle;Bian,2016

3. Estimating pedestrian speed using aggregated literature data;Bosina;Physica A: Statistical Mechanics and its Applications,2017

4. Drone forensics: challenges and new insights;Bouafif,2018

5. Review of pedestrian tracking: algorithms and applications;Cao;Acta Physica Sinica,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3