Analysis of Community Outdoor Public Spaces Based on Computer Vision Behavior Detection Algorithm

Author:

Wang Lei1,He Wenqi1

Affiliation:

1. School of Architecture and Art, North China University of Technology, Beijing 100144, China

Abstract

Community outdoor public spaces are indispensable to urban residents’ daily lives. Analyzing community outdoor public spaces from a behavioral perspective is crucial and an effective way to support human-centered development in urban areas. Traditional behavioral analysis often relies on manually collected behavioral data, which is time-consuming, labor-intensive, and lacks data breadth. With the use of sensors, the breadth of behavioral data has greatly increased, but its accuracy is still insufficient, especially in the fine-grained differentiation of populations and behaviors. Computer vision is more efficient in distinguishing populations and recognizing behaviors. However, most existing computer vision applications face some challenges. For example, behavior recognition is limited to pedestrian trajectory recognition, and there are few that recognize the diverse behaviors of crowds. In view of these gaps, this paper proposes a more efficient approach that employs computer vision tools to examine different populations and different behaviors, obtain important statistical measures of spatial behavior, taking the Bajiao Cultural Square in Beijing as a test bed. This population and behavior recognition model presents several improvement strategies: Firstly, by leveraging an attention mechanism, which emulates the human selective cognitive mechanism, it is capable of accentuating pertinent information while disregarding extraneous data, and the ResNet backbone network can be refined by integrating channel attention. This enables the amplification of critical feature channels or the suppression of irrelevant feature channels, thereby enhancing the efficacy of population and behavior recognition. Secondly, it uses public datasets and self-made data to construct the dataset required by this model to improve the robustness of the detection model in specific scenarios. This model can distinguish five types of people and six kinds of behaviors, with an identification accuracy of 83%, achieving fine-grained behavior detection for different populations. To a certain extent, it solves the problem that traditional data face of large-scale behavioral data being difficult to refine. The population and behavior recognition model was adapted and applied in conjunction with spatial typology analysis, and we can conclude that different crowds have different behavioral preferences. There is inconsistency in the use of space by different crowds, there is inconsistency between behavioral and spatial function, and behavior is concentrated over time. This provides more comprehensive and reliable decision support for fine-grained planning and design.

Funder

2023 North China University of Technology Organized Scientific Research Project

Beijing Municipal Science and Technology Commission Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Jacobs, J. (1961). The Death and Life of Great American Cities, Vintaqe Books.

2. Urban Geography in Western Countries;Ning;Urban Probl.,1985

3. Chapin, F.S. (1974). Human Activity Patterns in the City: Things People Do in Time and in Space, John Wiley and Sons.

4. Understanding Urban Spatial Structure of Shanghai Central City Based on Mobile Phone Data;Niu;Urban Plan. Forum,2014

5. A Review of Urban Studies Based on Transit Smart Card Data;Long;Urban Plan. Forum,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3