An autonomous framework for interpretation of 3D objects geometric data using 2D images for application in additive manufacturing

Author:

Rezaei Mohammad reza1,Houshmand Mahmoud1,Fatahi Valilai Omid2

Affiliation:

1. Department of Industrial Engineering, Sharif University of Technology, Tehran, Tehran, Iran

2. Department of Mathematics & Logistics, Jacobs University Bremen, Bremen, Bremen, Germany

Abstract

Additive manufacturing, artificial intelligence and cloud manufacturing are three pillars of the emerging digitized industrial revolution, considered in industry 4.0. The literature shows that in industry 4.0, intelligent cloud based additive manufacturing plays a crucial role. Considering this, few studies have accomplished an integration of the intelligent additive manufacturing and the service oriented manufacturing paradigms. This is due to the lack of prerequisite frameworks to enable this integration. These frameworks should create an autonomous platform for cloud based service composition for additive manufacturing based on customer demands. One of the most important requirements of customer processing in autonomous manufacturing platforms is the interpretation of the product shape; as a result, accurate and automated shape interpretation plays an important role in this integration. Unfortunately despite this fact, accurate shape interpretation has not been a subject of research studies in the additive manufacturing, except limited studies aiming machine level production process. This paper has proposed a framework to interpret shapes, or their informative two dimensional pictures, automatically by decomposing them into simpler shapes which can be categorized easily based on provided training data. To do this, two algorithms which apply a Recurrent Neural Network and a two dimensional Convolutional Neural Network as decomposition and recognition tools respectively are proposed. These two algorithms are integrated and case studies are designed to demonstrate the capabilities of the proposed platform. The results suggest that considering the complex objects which can be decomposed with planes perpendicular to one axis of Cartesian coordination system and parallel withother two, the decomposition algorithm can even give results using an informative 2D image of the object.

Publisher

PeerJ

Subject

General Computer Science

Reference57 articles.

1. A review of convolutional neural networks;Ajit,2020

2. Additive manufacturing, cloud-based 3D printing and associated services–overview;Baumann;Journal of Manufacturing and Materials Processing,2017

3. Model-based 3D object detection;Biegelbauer;Machine Vision and Applications,2008

4. The impact of the global factory on economic development;Buckley;Journal of World Business,2009

5. Additive manufacturing: rapid prototyping comes of age;Campbell;Rapid Prototyping Journal,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3