Model predictive path integral for decentralized multi-agent collision avoidance

Author:

Dergachev Stepan12,Yakovlev Konstantin12

Affiliation:

1. HSE University, Moscow, Russia

2. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia

Abstract

Collision avoidance is a crucial component of any decentralized multi-agent navigation system. Currently, most of the existing multi-agent collision-avoidance methods either do not take into account the kinematic constraints of the agents (i.e., they assume that an agent might change the direction of movement instantaneously) or are tailored to specific kinematic motion models (e.g., car-like robots). In this work, we suggest a novel generalized approach to decentralized multi-agent collision-avoidance that can be applied to agents with arbitrary affine kinematic motion models, including but not limited to differential-drive robots, car-like robots, quadrotors, etc. The suggested approach is based on the seminal sampling-based model predictive control algorithm, i.e., MPPI, that originally solves a single-agent problem. We enhance it by introducing safe distributions for the multi-agent setting that are derived from the Optimal Reciprocal Collision Avoidance (ORCA) linear constraints, an established approach from the multi-agent navigation domain. We rigorously show that such distributions can be found by solving a specific convex optimization problem. We also provide a theoretical justification that the resultant algorithm guarantees safety, i.e., that at each time step the control suggested by our algorithm does not lead to a collision. We empirically evaluate the proposed method in simulation experiments that involve comparison with the state of the art in different setups. We find that in many cases, the suggested approach outperforms competitors and allows solving problem instances that the other methods cannot successfully solve.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

PeerJ

Reference69 articles.

1. A rewriting system for convex optimization problems;Agrawal;Journal of Control and Decision,2018

2. A comprehensive study on pathfinding techniques for robotics and video games;Algfoor;International Journal of Computer Games Technology,2015

3. Cooperative collision avoidance for nonholonomic robots;Alonso-Mora;IEEE Transactions on Robotics,2018

4. Optimal reciprocal collision avoidance for multiple non-holonomic robots;Alonso-Mora,2013

5. Multi-agent pathfinding with continuous time;Andreychuk;Artificial Intelligence,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3