Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling

Author:

Al Moubayed Noura1,McGough Stephen2,Awwad Shiekh Hasan Bashar3

Affiliation:

1. Department of Computer Science, Durham University, Durham, UK

2. Department of Computer Science, University of Newcastle upon Tyne, Newcastle, UK

3. Caspian Learning, Newcastle upon Tyne, Newcastle, UK

Abstract

The article presents a discriminative approach to complement the unsupervised probabilistic nature of topic modelling. The framework transforms the probabilities of the topics per document into class-dependent deep learning models that extract highly discriminatory features suitable for classification. The framework is then used for sentiment analysis with minimum feature engineering. The approach transforms the sentiment analysis problem from the word/document domain to the topics domain making it more robust to noise and incorporating complex contextual information that are not represented otherwise. A stacked denoising autoencoder (SDA) is then used to model the complex relationship among the topics per sentiment with minimum assumptions. To achieve this, a distinct topic model and SDA per sentiment polarity is built with an additional decision layer for classification. The framework is tested on a comprehensive collection of benchmark datasets that vary in sample size, class bias and classification task. A significant improvement to the state of the art is achieved without the need for a sentiment lexica or over-engineered features. A further analysis is carried out to explain the observed improvement in accuracy.

Funder

EPSRC UK

Publisher

PeerJ

Subject

General Computer Science

Reference77 articles.

1. Sentiment analysis of Twitter data;Agarwal,2011

2. Identifying changes in the cybersecurity threat landscape using the LDA-web topic modelling data search engine;Al Moubayed,2017

3. What regularized auto-encoders learn from the data-generating distribution;Alain;Journal of Machine Learning Research,2014

4. Contributions to the study of sms spam filtering: new collection and results;Almeida,2011

5. Sms spam filtering using probabilistic topic modelling and stacked denoising autoencoder;AlMoubayed,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3