Publisher
Springer Nature Switzerland
Reference19 articles.
1. Suhariyanto, Firmanto, A., Sarno, R.: Prediction of movie sentiment based on reviews and score on rotten tomatoes using sentiwordnet. In: 2018 International Seminar on Application for Technology of Information and Communication, pp. 202–206, IEEE Indonesia (2018). https://doi.org/10.1109/ISEMANTIC.2018.8549704
2. Tiwari, P., Mishra, B.K.K., Kumar, S., Kumar, V.: Implementation of n-gram methodology for rotten tomatoes review dataset sentiment analysis. Int. J. Knowl. Discov. Bioinform. 7(1), 30–40 (2017). https://doi.org/10.4018/IJKDB.2017010103
3. Jain, S., Shrikant, M., Mishra, R., Tiwary, U.S.: Sentiment analysis: an empirical comparative study of various machine learning approaches. In: Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017), pp. 112–121, NLP Association of India, Kolkata, India (2017). https://aclanthology.org/W17-7515
4. Wu, J.Y., Pao, Y.: Predicting sentiment from rotten tomatoes movie reviews (2012). https://nlp.stanford.edu/courses/cs224n/2012/reports/WuJean_PaoYuanyuan_224nReport.pdf https://doi.org/10.1109/ISEMANTIC.2018.8549704
5. Huaxia, R., Yizao, L., Andrew, W.: Whose and what chatter matters? the effect of tweets on movie sales. Decis. Support Syst. 55(4), 863–870 (2013). https://doi.org/10.1016/j.dss.2012.12.022