A supervised scheme for aspect extraction in sentiment analysis using the hybrid feature set of word dependency relations and lemmas

Author:

Bhamare Bhavana R.1,Prabhu Jeyanthi2

Affiliation:

1. Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India

2. Department of Information Technology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India

Abstract

Due to the massive progression of the Web, people post their reviews for any product, movies and places they visit on social media. The reviews available on social media are helpful to customers as well as the product owners to evaluate their products based on different reviews. Analyzing structured data is easy as compared to unstructured data. The reviews are available in an unstructured format. Aspect-Based Sentiment Analysis mines the aspects of a product from the reviews and further determines sentiment for each aspect. In this work, two methods for aspect extraction are proposed. The datasets used for this work are SemEval restaurant review dataset, Yelp and Kaggle datasets. In the first method a multivariate filter-based approach for feature selection is proposed. This method support to select significant features and reduces redundancy among selected features. It shows improvement in F1-score compared to a method that uses only relevant features selected using Term Frequency weight. In another method, selective dependency relations are used to extract features. This is done using Stanford NLP parser. The results gained using features extracted by selective dependency rules are better as compared to features extracted by using all dependency rules. In the hybrid approach, both lemma features and selective dependency relation based features are extracted. Using the hybrid feature set, 94.78% accuracy and 85.24% F1-score is achieved in the aspect category prediction task.

Publisher

PeerJ

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3