Abstract
Relation extraction aims to predict the relation triple between the tail entity and head entity in a given text. A large body of works adopt meta-learning to address the few-shot issue faced by relation extraction, where each relation category only contains few labeled data for demonstration. Despite promising results achieved by existing meta-learning methods, these methods still struggle to distinguish the subtle differences between different relations with similar expressions. We argue this is largely owing to that these methods cannot capture unbiased and discriminative features in the very few-shot scenario. For alleviating the above problems, we propose a taxonomy-aware prototype network, which consists of a category-aware calibration module and a task-aware training strategy module. The former implicitly and explicitly calibrates the representation of prototype to become sufficiently unbiased and discriminative. The latter balances the weight between easy and hard instances, which enables our proposal to focus on data with more information during the training stage. Finally, comprehensive experiments are conducted on four typical meta tasks. Furthermore, our proposal presents superiority over the competitive baselines with an improvement of 3.30% in terms of average accuracy.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)