Dopant Redistribution and Activation in Ga Ion-Implanted High Ge Content SiGe by Explosive Crystallization during UV Nanosecond Pulsed Laser Annealing

Author:

Tabata ToshiyukiORCID,Karim Huet,Rozé Fabien,Mazzamuto Fulvio,Sermage BernardORCID,Kopalidis Petros,Roh Dwight

Abstract

Explosive crystallization (EC) is often observed when using nanosecond-pulsed melt laser annealing (MLA) in amorphous silicon (Si) and germanium (Ge). The solidification velocity in EC is so fast that a diffusion-less crystallization can be expected. In the contacts of advanced transistors, the active level at the metal/semiconductor Schottky interface must be very high to achieve a sub-10−9 ohm·cm2 contact resistivity, which has been already demonstrated by using the dopant surface segregation induced by MLA. However, the beneficial layer of a few nanometers at the surface may be easily consumed during subsequent contact cleaning and metallization. EC helps to address such kind of process integration issues, enabling the optimal positioning of the peak of the dopant chemical profile. However, there is a lack of experimental studies of EC in heavily-doped semiconductor materials. Furthermore, to the best of our knowledge, dopant activation by EC has never been experimentally reported. In this paper, we present dopant redistribution and activation by an EC process induced by UV nanosecond-pulsed MLA in heavily gallium (Ga) ion-implanted high Ge content SiGe. Based on the obtained results, we also highlight potential issues of integrating EC into real device fabrication processes and discuss how to manage them.

Funder

Electronic Components and Systems for European Leadership

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3