Design and Analysis of Junctionless-Based Gate All Around N+ Doped Layer Nanowire TFET Biosensor

Author:

Kumar ParveenORCID,Raj BalwinderORCID,Wadhwa Girish,Singh Balwinder,Kumar RajORCID

Abstract

This work is based on the analysis and designing of Gate All Around N+ doped layer Nanowire Tunnel Field Effect Transistors (NTFET) without junctions for application in biosensor by considering the various bio molecules like uricase, proteins, biotin, streptavidin, Aminopropyl-triethoxy-silane (ATS) and many more with dielectric modulation technique and gate-all-around (GAA) environment. Device sensitivity and tunneling probability is further improved by N+ doped layer (1 × 1020 cm−3). The change in the subthreshold-slope (SS), drain current (ID), transconductance(gm), and ratio of ION/IOFF has been examined to detect the sensitivity of the proposed device by confining various biomolecules in the area of nanocavity. The nanocavity area creates a shield in the source gate of oxide layer and electrodes metal. The Junctionless Gate All Around Nanowire Tunnel-Field-Effect-Transistor (JLGAA-NTFET) shows less leakage current and large control on the channel. The design of JLGAA-NTFET is with high doping concentration and observed higher sensitivity for ATS biomolecule which is suitable for sensor design application.

Publisher

The Electrochemical Society

Reference45 articles.

1. Simulation of sub-0.1-mu m MOSFETs with completely suppressed short-channel effect;Tanaka;IEEE Electron Device Lett.,1993

2. A guide to short-channel effects in MOSFETs;Duvvury;IEEE Circuits Devices Mag.,1986

3. Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel;Bricout;IEEE Trans. Electron Devices,1996

4. Multi-gate MOSFET structures with high-k dielectric materials;Tripathi;J. Electron Devices,2012

5. Analysis of double gate dual material tunnel FET device for low power SRAM cell design;Kumar;Quantum Matter,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3