Anticorrosive Behavior of SiCxNyOz Film Formed by Non-Heat Assistance Plasma-Enhanced Chemical Vapor Deposition Using Monomethylsilane, Nitrogen and Argon Gases

Author:

Watanabe Toru,Hori Kenta,Habuka Hitoshi

Abstract

A SiC x N y O z film was formed on an aluminum substrate without any heating assistance using monomethylsilane, nitrogen and argon gases at 10–30 Pa by the parallel plate plasma-enhanced chemical vapor deposition method. The obtained film did not have any considerable pinhole and crack, based on the evaluation using a concentrated hydrogen chloride aqueous solution. The anti-corrosive behavior of the obtained film was studied by means of chlorine trifluoride gas etching at the concentration of 100% at atmospheric pressure and at various temperatures. The etching rate increased with the increasing temperature and with the increasing nitrogen concentration in the film. The increase in the nitrogen concentration in the film enhanced the fluorine diffusion through the film during the etching. The anticorrosive behavior was determined to be adjustable by the nitrogen concentration contained in the film.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3