Cross-link Degree Dependence of Electronic, Water Uptakes and Thermal-mechanical Properties of Epoxy Resin Polymers: Molecular Simulations

Author:

Li Shuang Cui,Hao Chun ChengORCID,Sun Wei Feng

Abstract

Epoxy resin (EP) is a widely used polymer matrix. A deep understanding of the structure/property relationship of EP at the molecular level is critical to realizing the materials’ full potential. Here, molecular simulations are used to calculate and compare the electronic, water uptakes and thermal-mechanical properties of EP dependent on different cross-link degrees, bisphenol A diglygde ether (DGEBA) cross-linked with methyl-tetrahydro phthalic anhydride (MTHPA), revealing these inter-relationships. The results show that they have the same energetic spectrum character of electronic states, which is determined by compositions and bonding configurations of chemical groups in EP polymers, only with the different magnitudes of the density of states which are proportional to the number of cross-link points or curing agents and monomers. Furthermore, the van der Waals forces, not the cross-link chemical bonds, dominate the molecular chain interactions and motions in EP polymers below the glass transition temperature, while cross-link structure determines the configuration of the aggregated molecular chains and thermal properties of EP polymers above the glass transition temperature. Meanwhile, the hydrostatic mechanical modulus of EP material is primarily derived from cross-link structure even below the glass transition temperature. These results lay the foundation for designing and manufacturing customized EP with desirable electric and thermal-mechanical properties.

Funder

the Foundation of State Key Laboratory of Advanced Power Transmission Technology, China

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3