(Invited) Understanding the Switching Mechanism in RRAM Devices and the Dielectric Breakdown of Ultrathin High-k Gate Stacks from First Principles Calculations

Author:

Magyari-Köpe Blanka,Park Seong-Geon,Lee Hyung Dong,Nishi Yoshio

Abstract

RRAM devices received increased interest lately as advanced non-volatile memory technologies in terms of low operating power, high density, better non-volatility, fast switching speed, and compatibility with conventional CMOS process. However, up to date the fundamental physical principles controlling the switching are not well understood. We have employed first-principles simulations based on density functional theory (DFT) to elucidate the effect of oxygen vacancy defects on the electronic structure of rutile TiO2 and NiO using the local density approximation with correction of on-site Coulomb interactions (LDA+U). The vacancy filament induces several defect states within the band gap, which can lead to the defect-assisted electron transport and account for on-state low resistance conduction in bulk rutile TiO2 and NiO. For CMOS devices on the other hand the reliability of the gate stack is becoming a significant challenge with the continuous scaling of transistors, due to the ultrathin oxides and defects in the gate stack. The degradation of the gate oxides has been observed under electrical stress, due to traps generated by defects, e.g. oxygen vacancies present in these materials. First principles methods based on density functional theory are used to determine the location of the defect states in the band gap when these defects are at the various interfaces of the gate stack and how they contribute to the oxide breakdown in ultrathin gate stacks.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3