Author:
Waldron Niamh,Wang Gang,Nguyen Ngoc D.,Orzali Tommaso,Merckling Clement,Brammertz Guy,Ong Patrick,Winderickx Gillis,Hellings Geert,Eneman Geert,Caymax Matty,Meuris Marc,Horiguchi Naoto,Thean Aaron
Abstract
We report on the fabrication on InGaAs/InP implant free quantum well (IFQW) n-MOSFET devices on 200mm wafers in a Si CMOS processing environment. The starting virtual InP substrates were prepared by means of the aspect-ratio-trapping technique. Post CMP these substrate resulted in a planar substrate with a rms roughness of 0.32 nm. After channel and gate processing source drain regions were formed by the selective epitaxial growth of Si doped InGaAs. Contact to the source/drain regions was made by a standard W-plug/metal 1 process. The contact resistance was estimated to be on the order of 7x10-7 Ω.cm2. Fully processed devices clearly showed gate modulation albeit on top of high levels of source to drain leakage. The source of this leakage was determined to be the result of the unintentional background doping of the InP buffer layer. Simulations show that the inclusion of the p-InAlAs between the InP and InGaAs can effectively suppress this leakage. This work is a significant step towards the integration of InGaAs based devices on a standard CMOS platform.
Publisher
The Electrochemical Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献