Author:
Tang Kechao,Droopad Ravi,McIntyre Paul C.
Abstract
We report on the role of hydrogen (forming gas) post-metal annealing to passivate border traps in Al2O3/In0.53Ga0.47As (100) gate stacks and of bias temperature stress treatments to generate/depassivate such traps. Experiments are carried out with Pd metal gates that efficiently dissociate molecular hydrogen during forming gas annealing, and they make use of InGaAs epitaxial layer substrates that are capped with arsenic after completion of their growth, to avoid unintentional oxide formation and disorder at the channel surface prior to atomic layer deposition of the Al2O3 gate dielectric. We find that forming gas anneal (FGA) greatly reduces both the interface trap density and border trap density measured in the gate stacks, but that the effectiveness of FGA for border trap passivation saturates for anneals with thermal budgets greater than 450°C/30 min. Both negative and positive bias temperature stress treatments are found to have no effect on the extracted border trap densities compared to non-treated capacitors.
Publisher
The Electrochemical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献