(Invited) Epitaxy of (SiGe/Si) Superlattices for the Fabrication of Horizontal Gate-All-Around Nanosheet Transistors

Author:

Loubet Nicolas J,Li Juntao,Chao Robin,Yeung Chunwing,Frougier Julien,Durfee Curtis,Arceo de la Pena Abraham,Muthinti Raja,Bi Zhenxing,Sankarapandian Muthumanickam,Xu Wenyu,Mignot Yann,Sieg Stuart,Conti Richard,Veeraraghavan Basker,Jagannathan Hemanth,Haran Bala,Divakaruni Rama,Bu Huiming

Abstract

Stacked horizontal Gate All Around Nanosheet transistors were recently proposed as a replacement of FinFET for the sub-7nm device nodes. In order to stack Nanosheet channels, a specific SiGe/Si superlattice epitaxy is employed, with SiGe being used as a sacrificial layer that will define the suspension thickness (Tsus) between the channels. In this paper, we will consider the optimization of SiGe/Si multilayer epitaxy for Nanosheet channel definition (Fig. 1). Stacks with different Ge compositions are physically characterized and studied. With strain characterization and x-ray diffraction measurements on (100) substrates, we will show that it is possible to form pseudomorphic defect-free SiGe/Si multilayers over a wide range of Ge concentrations in the sacrificial SiGe (Fig. 2 and 3). The uniformity obtained on blanket 300mm substrates will be presented (Fig. 4), with a discussion on the SiGe/Si interface abruptness. In the context of CMOS device integration, it is necessary to employ a low temperature STI process to mitigate the Ge inter-diffusion in the silicon channel and to avoid the possible generation of defects from plastic relaxation of SiGe. The SiGe and Ge-Si intermixed regions are removed with appropriate selective etch process in two Nanosheet specific modules: inner spacer formation in the extension regions (Fig. 5) and post channel release in the gate regions (Fig. 6), leaving only 5nm intrinsic silicon Nanosheets. We will report the etch rate and selectivity of our in-house vapor-phase channel release process performed at low temperature. This process enables us to remove SiGe versus Si with a great selectivity and a limited amount of silicon loss during channel release, before gate stack deposition around the stacked Nanosheets. From a device perspective, we will show that the optimization of the silicon thickness in the SiGe/Si superlattice plays an important role in the Nanosheet device performance and electrostatics (Fig. 7). Finally, with a good SiGe/Si multilayer uniformity control, a reduced thermal budget and after optimization of our in-house SiGe selective etch process, we will show the capability to form 5nm silicon Nanosheet channels with small within wafer variation, low device variability and good process control, compatible with the fabrication of very large scale integrated circuits for future CMOS device nodes. Acknowledgements: This work was performed by the Research Alliance Teams at various IBM Research Facilities. Figure 1

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3